organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2,3-Dibromo-3-phenyl-1-(3-phenylsydnon-4-yl)propan-1-one

Hoong-Kun Fun,^a*‡ Madhukar Hemamalini,^a Nithinchandra^b and Balakrishna Kalluraya^b

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India Correspondence e-mail: hkfun@usm.my

Received 28 February 2011; accepted 3 March 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.007 Å; R factor = 0.043; wR factor = 0.104; data-to-parameter ratio = 18.8.

In the title compound [systematic name: 4-(2,3-dibromo-3phenylpropanoyl)-3-phenyl-1,2,3-oxadiazol-3-ylium-5-olate], $C_{17}H_{12}Br_2N_2O_3$, the oxadiazole ring is essentially planar, with a maximum deviation of 0.001 (3) Å. The central oxadiazole ring makes dihedral angles of 73.3 (2) and 29.0 (2) $^{\circ}$ with the adjacent and remote phenyl rings, respectively. In the crystal, adjacent molecules are connected by C-H···O hydrogen bonds, forming a supramolecular chain along the c axis. There is an intramolecular $C-H\cdots O$ hydrogen bond, which generates an S(6) ring motif.

Related literature

For applications of sydnones, see: Rai et al. (2008); Jyothi et al. (2008). For details of chalcones, see: Rai et al. (2007).

Experimental

Crystal data C17H12Br2N2O3

 $M_r = 452.11$

Monoclinic, $P2_1/c$	
a = 11.9109 (3) Å	
b = 17.5018 (3) Å	
c = 8.5365 (2) Å	
$\beta = 94.960 \ (1)^{\circ}$	
V = 1772.87 (7) Å ³	

Data collection

23853 measured reflections
4082 independent reflections
1912 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.068$

Refinement

ł

v

S

4

$R[F^2 > 2\sigma(F^2)] = 0.043$	217 parameters
$vR(F^2) = 0.104$	H-atom parameters constrained
S = 0.98	$\Delta \rho_{\rm max} = 0.48 \text{ e } \text{\AA}^{-3}$
082 reflections	$\Delta \rho_{\rm min} = -0.44 \text{ e} \text{ Å}^{-3}$

Z = 4

Mo $K\alpha$ radiation

 $0.30 \times 0.20 \times 0.04 \text{ mm}$

 $2\sigma(I)$

 $\mu = 4.59 \text{ mm}^{-1}$

T = 296 K

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C10-H10A···O2	0.98	2.35	3.028 (6)	126
$C13-H13A\cdots O2^{i}$	0.93	2.49	3.312 (6)	147

Symmetry code: (i) x, y, z + 1.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University grant No. 1001/PFIZIK/811160. MH thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2684).

References

Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

- Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA
- Jyothi, C. H., Girisha, K. S., Adithya, A. & Kalluraya, B. (2008). Eur. J. Med. Chem. 43, 2831-2834.
- Rai, N. S., Kalluraya, B. & Lingappa, B. (2007). Synth. Commun. 37, 2267-2273.
- Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715-1720.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

[‡] Thomson Reuters ResearcherID: A-3561-2009.

supplementary materials

Acta Cryst. (2011). E67, o814 [doi:10.1107/S1600536811008026]

2,3-Dibromo-3-phenyl-1-(3-phenylsydnon-4-yl)propan-1-one

H.-K. Fun, M. Hemamalini, Nithinchandra and B. Kalluraya

Comment

Sydnones constitute a well-defined class of mesoionic compounds that contain the 1,2,3-oxadiazole ring system. The study of sydnones still remains a field of interest because of their electronic structure and also because of the varied types of biological activities (Rai *et al.*, 2008). Recently, sydnone derivatives were found to exhibit promising anti-microbial properties (Jyothi *et al.*, 2008). Chalcones were obtained by the base-catalyzed condensation of 4-acetyl-3-aryl sydnones with aromatic aldehydes in alcoholic medium employing sodium hydroxide as catalyst at 0–5 °C. Bromination of chalcones with bromine in glacial acetic acid afforded dibromo chalcones (Rai *et al.*, 2007).

The molecular structure of the title compound is shown in Fig. 1. The oxadiazole (N1/N2/O1/C7/C8) ring is essentially planar, with a maximum deviation of 0.001 (3) Å for atom O1. The central oxadiazole (N1/N2/O1/C7/C8) ring makes dihedral angles of 73.3 (2)° and 29.0 (2)° with the attached phenyl (C1–C6) and the terminal phenyl (C12–C17) rings, respectively.

In the crystal, (Fig. 2), the adjacent molecules are connected by intra and intermolecular C10—H10A···O2 and C13—H13A···O2 (Table 1) hydrogen bonds forming supramolecular chains along the *c*-axis. There is an intramolecular C—H···O hydrogen bond, which generates an S(6) ring motif.

Experimental

 $1-(3^{1}-Phenylsydnon-4^{1}-yl)-3-(phenyl)$ -propen-1-one (0.01 mol) was dissolved in glacial acetic acid (2–30 ml) by gentle warming. A solution of bromine in glacial acetic acid (30% w/v) was added to it with constant stirring till the yellow color of the bromine persisted. The reaction mixture was stirred at room temperature for 1-2 hours. The solid which separated was filtered, washed with methanol and dried. It was then recrystallized from ethanol. Crystals suitable for X-ray analysis were obtained from 1:2 mixtures of DMF and ethanol by slow evaporation.

Refinement

All H atoms were positioned geometrically (C—H = 0.93 Å) and were refined using a riding model, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. The intramolecular hydrogen bond is shown as a dashed line.

Fig. 2. The crystal packing of the title compound.

F(000) = 888 $D_{\rm x} = 1.694 \text{ Mg m}^{-3}$

 $\theta = 2.3-19.9^{\circ}$ $\mu = 4.59 \text{ mm}^{-1}$ T = 296 KPlate, colourless $0.30 \times 0.20 \times 0.04 \text{ mm}$

Mo K α radiation, $\lambda = 0.71073$ Å Cell parameters from 3028 reflections

4-(2,3-dibromo-3-phenylpropanoyl)-3-phenyl-1,2,3-oxadiazol-3-ylium-5-olate

Crystal data
$C_{17}H_{12}Br_2N_2O_3$
$M_r = 452.11$
Monoclinic, $P2_1/c$
Hall symbol: -P 2ybc
a = 11.9109 (3) Å
b = 17.5018 (3) Å
c = 8.5365 (2) Å
$\beta = 94.960 \ (1)^{\circ}$
$V = 1772.87 (7) \text{ Å}^3$
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer	4082 independent reflections
Radiation source: fine-focus sealed tube	1912 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.068$
φ and ω scans	$\theta_{\text{max}} = 27.6^\circ, \ \theta_{\text{min}} = 1.7^\circ$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2005)	$h = -15 \rightarrow 15$
$T_{\min} = 0.341, T_{\max} = 0.849$	$k = -22 \rightarrow 22$
23853 measured reflections	$l = -11 \rightarrow 11$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.104$ S = 0.984082 reflections 217 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_0^2) + (0.0352P)^2 + 0.6409P]$ where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.48 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.44 \text{ e } \text{Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Br1	0.16038 (4)	1.00790 (2)	0.96635 (6)	0.0826 (2)
Br2	0.24594 (5)	0.75050 (3)	0.96598 (7)	0.1118 (3)
01	0.0435 (3)	0.92146 (17)	0.4180 (4)	0.0871 (9)
O2	0.2052 (3)	0.94860 (17)	0.5666 (4)	0.0889 (10)
O3	0.0007 (3)	0.8462 (2)	0.9185 (4)	0.0943 (10)
N1	-0.0551 (3)	0.87006 (17)	0.5834 (5)	0.0648 (9)
N2	-0.0581 (4)	0.8894 (2)	0.4355 (5)	0.0855 (11)
C1	-0.1583 (4)	0.7596 (2)	0.6667 (6)	0.0827 (14)
H1A	-0.0949	0.7295	0.6565	0.099*
C2	-0.2551 (4)	0.7276 (3)	0.7140 (6)	0.0939 (16)
H2A	-0.2574	0.6757	0.7365	0.113*
C3	-0.3477 (5)	0.7719 (3)	0.7279 (6)	0.0957 (16)
H3A	-0.4133	0.7502	0.7596	0.115*
C4	-0.3441 (5)	0.8483 (3)	0.6951 (7)	0.1000 (16)
H4A	-0.4076	0.8783	0.7048	0.120*
C5	-0.2478 (4)	0.8815 (3)	0.6481 (6)	0.0827 (14)
H5A	-0.2452	0.9334	0.6258	0.099*
C6	-0.1562 (4)	0.8357 (2)	0.6350 (5)	0.0639 (11)
C7	0.1121 (5)	0.9216 (2)	0.5614 (6)	0.0722 (12)
C8	0.0427 (4)	0.8868 (2)	0.6687 (5)	0.0615 (11)
С9	0.0669 (4)	0.8733 (2)	0.8348 (6)	0.0695 (12)
C10	0.1842 (4)	0.8990 (2)	0.9026 (6)	0.0768 (13)
H10A	0.2368	0.8972	0.8205	0.092*
C11	0.2311 (4)	0.8574 (3)	1.0407 (6)	0.0820 (13)
H11A	0.1767	0.8585	1.1205	0.098*
C12	0.3433 (4)	0.8850 (2)	1.1137 (6)	0.0664 (11)
C13	0.3544 (4)	0.9064 (2)	1.2683 (6)	0.0800 (13)
H13A	0.2924	0.9042	1.3273	0.096*
C14	0.4564 (6)	0.9312 (3)	1.3369 (7)	0.0982 (17)
H14A	0.4638	0.9446	1.4427	0.118*
C15	0.5474 (5)	0.9361 (3)	1.2496 (9)	0.0971 (17)
H15A	0.6165	0.9531	1.2958	0.116*
C16	0.5364 (4)	0.9164 (3)	1.0977 (8)	0.0981 (17)

supplementary materials

H16A	0.5981	0.9207	1.0385	0.118*
C17	0.4361 (4)	0.8899 (3)	1.0275 (6)	0.0888 (14)
H17A	0.4304	0.8754	0.9223	0.107*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0582 (3)	0.0681 (3)	0.1219 (5)	-0.0028 (2)	0.0096 (3)	-0.0066 (3)
Br2	0.1595 (6)	0.0592 (3)	0.1144 (5)	-0.0146 (3)	-0.0012 (4)	-0.0116 (3)
01	0.106 (3)	0.087 (2)	0.071 (2)	-0.0081 (19)	0.022 (2)	0.0099 (17)
02	0.092 (2)	0.086 (2)	0.095 (3)	-0.0176 (18)	0.042 (2)	0.0054 (18)
03	0.085 (2)	0.131 (3)	0.068 (2)	-0.051 (2)	0.0126 (19)	0.005 (2)
N1	0.075 (3)	0.057 (2)	0.063 (3)	-0.0025 (18)	0.008 (2)	-0.0008 (18)
N2	0.096 (3)	0.091 (3)	0.069 (3)	-0.004 (2)	0.005 (3)	0.007 (2)
C1	0.076 (3)	0.061 (3)	0.109 (4)	-0.003 (2)	-0.005 (3)	0.001 (3)
C2	0.080 (4)	0.069 (3)	0.129 (5)	-0.020 (3)	-0.011 (3)	0.010 (3)
C3	0.080 (4)	0.098 (4)	0.108 (4)	-0.023 (3)	0.003 (3)	0.007 (3)
C4	0.086 (4)	0.091 (4)	0.125 (5)	0.015 (3)	0.024 (3)	0.004 (3)
C5	0.083 (3)	0.065 (3)	0.101 (4)	0.001 (3)	0.013 (3)	0.006 (3)
C6	0.065 (3)	0.061 (3)	0.065 (3)	-0.006 (2)	0.000(2)	0.000(2)
C7	0.088 (4)	0.055 (3)	0.076 (4)	0.002 (2)	0.021 (3)	-0.002 (2)
C8	0.067 (3)	0.064 (2)	0.055 (3)	-0.009 (2)	0.014 (3)	0.000 (2)
C9	0.063 (3)	0.074 (3)	0.072 (4)	-0.022 (2)	0.012 (3)	-0.008 (2)
C10	0.066 (3)	0.087 (3)	0.079 (3)	-0.014 (2)	0.017 (3)	0.004 (3)
C11	0.082 (3)	0.083 (3)	0.083 (4)	-0.019 (3)	0.015 (3)	0.000 (3)
C12	0.067 (3)	0.068 (3)	0.064 (3)	-0.005 (2)	0.009 (3)	0.000 (2)
C13	0.094 (4)	0.067 (3)	0.080 (4)	-0.010 (2)	0.017 (3)	-0.011 (2)
C14	0.127 (5)	0.081 (3)	0.084 (4)	-0.012 (3)	-0.006 (4)	-0.012 (3)
C15	0.077 (4)	0.078 (3)	0.130 (6)	-0.007 (3)	-0.025 (4)	0.003 (3)
C16	0.061 (3)	0.116 (4)	0.116 (5)	0.003 (3)	0.001 (4)	0.017 (4)
C17	0.070 (3)	0.115 (4)	0.082 (4)	0.009 (3)	0.014 (3)	0.006 (3)

Geometric parameters (Å, °)

2.008 (4)	C5—H5A	0.9300
1.990 (5)	С7—С8	1.422 (6)
1.354 (5)	C8—C9	1.442 (6)
1.411 (5)	C9—C10	1.533 (6)
1.203 (5)	C10-C11	1.455 (6)
1.206 (5)	C10—H10A	0.9800
1.304 (5)	C11—C12	1.505 (6)
1.351 (5)	C11—H11A	0.9800
1.448 (5)	C12—C13	1.367 (6)
1.361 (5)	C12—C17	1.382 (6)
1.374 (6)	C13—C14	1.372 (7)
0.9300	C13—H13A	0.9300
1.361 (6)	C14—C15	1.370 (7)
0.9300	C14—H14A	0.9300
1.369 (6)	C15—C16	1.338 (7)
	2.008 (4) 1.990 (5) 1.354 (5) 1.411 (5) 1.203 (5) 1.206 (5) 1.304 (5) 1.351 (5) 1.448 (5) 1.361 (5) 1.374 (6) 0.9300 1.361 (6) 0.9300 1.369 (6)	2.008 (4) $C5-H5A$ 1.990 (5) $C7-C8$ 1.354 (5) $C8-C9$ 1.411 (5) $C9-C10$ 1.203 (5) $C10-C11$ 1.206 (5) $C10-H10A$ 1.304 (5) $C11-C12$ 1.351 (5) $C11-H11A$ 1.448 (5) $C12-C13$ 1.361 (5) $C13-C14$ 0.9300 $C13-H13A$ 1.361 (6) $C14-C15$ 0.9300 $C14-H14A$ 1.369 (6) $C15-C16$

С3—НЗА	0.9300	C15—H15A	0.9300
C4—C5	1.376 (6)	C16—C17	1.370 (7)
C4—H4A	0.9300	C16—H16A	0.9300
C5—C6	1.365 (5)	C17—H17A	0.9300
N2	111.2 (4)	C8—C9—C10	114.9 (4)
N2—N1—C8	114.6 (4)	C11—C10—C9	115.6 (4)
N2—N1—C6	116.6 (4)	C11—C10—Br1	108.0 (3)
C8—N1—C6	128.8 (4)	C9—C10—Br1	103.6 (3)
N1—N2—O1	105.3 (4)	C11—C10—H10A	109.8
C6—C1—C2	119.2 (4)	C9—C10—H10A	109.8
C6—C1—H1A	120.4	Br1-C10-H10A	109.8
C2—C1—H1A	120.4	C10—C11—C12	116.1 (4)
C3—C2—C1	120.1 (5)	C10—C11—Br2	104.4 (3)
C3—C2—H2A	119.9	C12—C11—Br2	109.5 (3)
C1—C2—H2A	119.9	C10—C11—H11A	108.8
C2—C3—C4	119.9 (5)	C12—C11—H11A	108.8
C2—C3—H3A	120.1	Br2—C11—H11A	108.8
C4-C3-H3A	120.1	C_{13} C_{12} C_{17}	118 8 (4)
C_{3} — C_{4} — C_{5}	120.9 (5)	C13 - C12 - C11	119.8 (4)
$C_3 - C_4 - H_4 A$	119.5	C_{17} C_{12} C_{11}	121 4 (4)
C_{5} C_{4} H_{4A}	119.5	C_{12} C_{13} C_{14}	121.4(4) 120.4(5)
C6-C5-C4	119.5	$C_{12} = C_{13} = H_{13}$	110.4 (5)
C6-C5-H5A	121.0	C12 = C13 = H13A	119.0
C4-C5-H5A	121.0	$C_{15} - C_{14} - C_{13}$	120.0 (5)
	121.0 122.0(4)	$C_{15} = C_{14} = C_{15}$	120.0 (3)
C1 = C6 = C3	122.0(4)	C13 - C14 - H14A	120.0
$C_1 = C_0 = N_1$	119.0 (4)	C15 - C14 - M14A	120.0
$C_{3} = C_{6} = N_{1}$	110.2 (4)	C16 - C15 - C14	119.7 (3)
02 - C7 - 01	119.7 (3)	C10-C15-H15A	120.2
02	136.8 (5)	C14—C15—H15A	120.2
01-07-08	103.5 (4)		121.3 (5)
NI	105.5 (4)	С15—С16—Н16А	119.3
NI-C8-C9	125.7 (4)	CI/CI6HI6A	119.3
07-08-09	128.7 (4)	C16	119.7 (5)
03-09-08	124.2 (4)	С16—С17—Н17А	120.2
O3—C9—C10	120.9 (4)	C12—C17—H17A	120.2
C8—N1—N2—O1	-0.1 (5)	N1—C8—C9—O3	-1.4 (7)
C6—N1—N2—O1	178.4 (3)	C7—C8—C9—O3	176.6 (4)
C7—O1—N2—N1	0.1 (4)	N1—C8—C9—C10	-179.0 (4)
C6—C1—C2—C3	0.3 (8)	C7—C8—C9—C10	-1.1 (6)
C1—C2—C3—C4	-0.2 (8)	O3—C9—C10—C11	29.5 (6)
C2—C3—C4—C5	0.0 (8)	C8—C9—C10—C11	-152.7 (4)
C3—C4—C5—C6	0.0 (8)	O3—C9—C10—Br1	-88.4 (4)
C2-C1-C6-C5	-0.3 (7)	C8—C9—C10—Br1	89.4 (4)
C2-C1-C6-N1	-179.3 (4)	C9—C10—C11—C12	-176.7 (4)
C4—C5—C6—C1	0.1 (7)	Br1-C10-C11-C12	-61.3 (5)
C4—C5—C6—N1	179.1 (4)	C9—C10—C11—Br2	62.6 (4)
N2—N1—C6—C1	106.8 (5)	Br1-C10-C11-Br2	178.07 (17)
C8—N1—C6—C1	-74.9 (6)	C10-C11-C12-C13	123.0 (5)

supplementary materials

N2—N1—C6—C5	-72.2 (5)	Br2-C11-C12-C13	-119.1 (4)
C8—N1—C6—C5	106.1 (5)	C10-C11-C12-C17	-56.4 (6)
N2-01-C7-02	-179.6 (4)	Br2-C11-C12-C17	61.6 (5)
N2—O1—C7—C8	-0.1 (4)	C17—C12—C13—C14	-1.1 (7)
N2—N1—C8—C7	0.0 (5)	C11-C12-C13-C14	179.6 (4)
C6—N1—C8—C7	-178.3 (3)	C12-C13-C14-C15	1.4 (7)
N2—N1—C8—C9	178.3 (4)	C13-C14-C15-C16	-0.3 (8)
C6—N1—C8—C9	0.1 (6)	C14-C15-C16-C17	-1.1 (8)
O2—C7—C8—N1	179.3 (5)	C15—C16—C17—C12	1.4 (8)
O1C7C8N1	0.1 (4)	C13—C12—C17—C16	-0.3 (7)
O2—C7—C8—C9	1.0 (8)	C11—C12—C17—C16	179.0 (4)
O1—C7—C8—C9	-178.2 (4)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!\!\cdot\!\!\cdot\!\!\cdot$
C10—H10A…O2	0.98	2.35	3.028 (6)	126.
C13—H13A····O2 ⁱ	0.93	2.49	3.312 (6)	147.
Symmetry codes: (i) $x, y, z+1$.				

